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Abstract

The quasi-steady hydrodynamic Stokes drag force and torque exerted on each of N non-identical
particles immersed in a general quadratic undisturbed ¯ow ®eld at in®nity is analytically investigated.
Explicit results are given for the case of two spherical particles. In particular, expressions are obtained
for these forces and torques in terms of: (1) the linear and angular velocities of each of the particles
together with the local shear rate of the quadratic ¯ow, all evaluated at the center of volume of the two-
sphere system; and (2) the position-independent triadic shear-rate gradient characterizing the
undisturbed quadratic ¯ow ®eld. These tensorial (matrix) formulas, obtained by the method of
re¯ections for the intrinsic Stokes resistance coe�cients for each of the spheres, are expressed
nondimensionally in terms of the respective sphere radii, the center-to-center distance 2H between
spheres, a unit vector e lying along the line-of-centers, and a characteristic length-scale R0 of the
undisturbed quadratic ¯ow ®eld Ð typically the radius of a tube bounding an axisymmetric Poiseuille
¯ow in which the two spheres are suspended. The re¯ection scheme is accurate within an error of
O��r=H �a�r=R0�b�, wherein a� bR6 and in which r is a characteristic sphere radius. The respective
translational velocities of the two spheres are derived for the particular case where each is freely
suspended in an unbounded Poiseuille ¯ow (i.e., wall e�ects are neglected). It is shown in this case that
a net radial motion of the pair of neutrally buoyant spheres ensues across the undisturbed streamlines as
a consequence of the quadratic nature of the ¯ow ®eld (coupled with the interparticle hydrodynamic
interaction). The direction of net migration calculated for the two spheres is from low to high shear
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rates. This contrasts with shear-induced migration phenomena observed in concentrated suspensions
subjected to inhomogeneous shearing ¯ows, where the direction of particle migration is from high to low
shear rates. The two opposing e�ects acting in concert may help explain how a steady-state radial
particle concentration distribution can be achieved for suspensions of non-Brownian particles. # 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Much attention has been focused in recent years on the behavior of suspensions subjected to
inhomogeneous shear ¯ows, and in particular on shear-induced, cross-streamline particle
migration phenomena. Experimental measurements by Karnis et al. (1966) revealed that
(neutrally-buoyant particle) velocity pro®les in dense two-phase ¯ows di�er markedly from
those observed for single-phase ¯ows, even at very small Reynolds numbers. Eckstein et al.
(1977) and later Leighton and Acrivos (1987a, 1987b) introduced the kinematical notion of a
shear-induced particulate self-di�usivity coe�cient in an attempt to quantify the observed
cross-streamline migration phenomena. Gadala-Maria and Acrivos (1980) observed that
viscous resuspension of the particles occurred during the course of their measurements of the
rheological properties of suspensions of coal particles, a fact that could possibly rationalize
otherwise unexplained rheological di�erences observed during comparable homogeneous shear
¯ow experiments performed on these same suspensions. Enhanced experiments were later
carried out by others, including Koh et al. (1994), Averbakh et al. (1997), and Shauly et al.
(1997) using laser-Doppler velocimetry. Their reports provide rich and detailed data on velocity
pro®les and local particle concentration distributions in suspensions, thereby furnishing explicit
visual evidence of the lateral migration phenomena whose existence was only implicitly inferred
in prior work. Again, non-uniform radial particle concentration pro®les were attributed to
shear-induced lateral migration phenomena.
Various mechanisms have been postulated attempting to explain why Ð at low Reynolds

numbers, where Segre±Silberberg-type inertial e�ects are absent Ð freely suspended particles
migrate across the streamlines of the `undisturbed' ¯ow, a phenomenon that is impossible for a
single, freely suspended sphere, even in the presence of wall e�ects (Happel and Brenner, 1983).
It is now well accepted that hydrodynamic interactions among the suspended particles
constitutes the most likely mechanism responsible for the phenomenon of radial migration.
Since analytical solutions of multiparticle Stokes-¯ow problems are intractable, three basic

approaches have been used in theoretical attempts to quantify the observed phenomena: (1)
analytical/numerical approaches towards solving the underlying multiparticle hydrodynamic
equations, such as Stokesian dynamics (Brady, 1988). In addition, related techniques (e.g.,
Hassonjee et al., 1988, 1992; Brenner et al., 1990; Kim and Karrila, 1991; Chang and Powell,
1993; Nott and Brady, 1994) have been employed, wherein the individual motions of a large
number of suspended particles were followed using either collocation methods or boundary
integrals. However, because of the use of spatially-periodic boundary conditions or cell models
in these approaches, such schemes appear ill suited to treating unbounded inhomogeneous ¯ow
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problems of the present type; (2) a second purely phenomenological, kinematical approach,
employed by Leighton and Acrivos (1987b), Phillips et al. (1992), and others, proved to be
quite successful in reproducing many of the features observed during narrow-gap Couette
experiments (Acrivos et al., 1993). The scheme involves introducing an empirical shear-induced
self-di�usion coe�cient based on scaling arguments, subsequently using available experimental
data to quantify the appropriate parameters appearing in their phenomenological description;
(3) the third approach, which is applicable to the entire class of multiparticle Stokes-¯ow
problems, uses degenerate microscale models of local particle conformations in suspensions to
approach analytically this class of hydrodynamic interaction problems. The latter schemes aim
to encapsulate the primary e�ects arising from hydrodynamic interactions between a small
number of particles, while remaining su�ciently simple in scope to be handled analytically in
many cases. Results obtained using this in-depth view of systems containing a small number of
interacting particles provide a rational vehicle for deriving the macroscopic properties of
suspensions, at least in the dilute particle limit. It enables one to predict not only the self-
di�usion phenomena in cases where the shear rate is spatially uniform, but also enables
calculating the e�ects of varying concentrations on radial migration (termed transverse, shear-
induced, gradient di�usion). Spatially periodic as well as two- or three-body con®gurations
were studied. For example, Zuzovski et al. (1983) and Adler et al. (1985) used a spatially-
periodic model to obtain the rheological properties of suspensions. Batchelor (1972) used two-
body interactions to calculate the sedimentation velocity of a dilute suspension of rigid non-
neutrally-buoyant spherical particles, whereas Batchelor and Green (1972b) employed two-
body interactions to calculate the rheological properties of dilute suspensions. Haber et al.
(1990) used two-body interactions to derive the dispersion coe�cient of a dilute suspension of
¯exible dumb-bells. Wang et al. (1998) invoked three-body interactions to calculate radial
particle di�usivities in dilute suspensions undergoing shear. Many other applications of the
general philosophy embodied in (3) exist in the literature.

As indicated above, the mainstay of past analytical investigations of dilute suspensions has
involved taking account of the hydrodynamic interactions between two or three rigid spheres,
suspended either in quiescent ¯uids or in ¯uids undergoing simple shear ¯ow. Several of these
were investigated analytically, either exactly via use of bipolar coordinates or approximately by
the method of re¯ections. Other schemes utilized purely numerical methods, such as
collocations or boundary integrals. Stimson and Je�ery (1926) were the ®rst to obtain an
analytical expression for the drag force exerted on two identical spheres moving along their
line-of-centers through a quiescent ¯uid. Brenner and O'Neill (1972) as well as Batchelor and
Green (1972a) calculated the hydrodynamic interactions between two identical spheres in linear
shear ¯ows. Je�rey and Onishi (1984) derived the hydrodynamic interactions between two
moving non-identical spheres. Kim (1987) calculated three-body interactions. Je�rey (1992)
obtained the resistance matrices for two unequal spheres immersed in a general homogeneous
shear ¯ow. Most recently, Cichocki et al. (1994) obtained the drag forces exerted on a large
number of spherical particles comprising part of a suspension. Although a vast number of such
theoretical studies exist for two or three spheres immersed in either quiescent or
homogeneously-sheared ¯uids, to the best of our knowledge no analytical results exist for the
case of two spheres undergoing inhomogeneous shear ¯ow, particularly quadratic ¯ows.
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Motivation for studying the latter classes of ¯ows is provided by ongoing interest in seeking a
rational explanation of lateral migration phenomena.
Wang et al. (1998), who investigated three-body systems, proved that two-body interactions

in simple shear ¯ow fail to predict transverse shear-induced gradient di�usion. It has not been
investigated, however, whether a two-body system immersed in an inhomogeneous shear ¯ow,
e.g., a quadratic ¯ow, can give rise to permanent lateral migration and, hence, to transverse
`di�usion.' It is well known (see e.g., Happel and Brenner, 1983) that in the absence of true
wall e�ects (the center of) a single, freely suspended sphere adopts the undisturbed local ¯uid
velocity in its proximity in a simple shear ¯ow, but lags behind the local Poiseuille parabolic
velocity in the quadratic ¯ow occurring in a circular tube. In neither case, does such an
isolated sphere undergo radial migration, a conclusion which applies even when true wall
e�ects are taken into account.
The objective of this paper is to broadly outline a generic approach to two-sphere

hydrodynamic interaction problems in inhomogeneous ¯ow ®elds Ð more speci®cally to
investigate the e�ect of general quadratic ¯ows on the motions of each of two neutrally
buoyant spheres in the quasi-static Stokes ¯ow regime. Initially, we develop a general theory
for the hydrodynamic forces and torques on an N-sphere system in a quadratic ¯ow ®eld at
in®nity when each of the spheres translates and rotates with arbitrarily prescribed velocities.
From this analysis, we show how to extract the contribution of the quadratic ¯ow to the
intrinsic hydrodynamic resistance coe�cients from the far simpler boundary-value problem,
wherein one of the spheres moves through an otherwise quiescent ¯uid, i.e., one in which the
¯uid at in®nity is at rest as too are the other spheres. As a special case the hydrodynamic
resistance tensors are calculated for two spheres immersed in a general quadratic ¯ow. We then
examine whether the hydrodynamic drag forces exerted on two-freely suspended spheres in an
unbounded Poiseuille ¯ow will result in permanent lateral migration of the pair, albeit in the
absence of wall e�ects. The results thereby obtained are expected to facilitate better
understanding of the mechanisms contributing to shear-induced gradient di�usion phenomena.

2. Statement of the problem

Consider N non-identical rigid spherical particles of respective radii rI (I � 1, . . . ,N)
suspended in an incompressible ¯uid of viscosity m which is subjected to a general unbounded
quadratic ¯ow ®eld v1. The position vector of the center ROI of the Ith particle is measured
from an arbitrary reference point O ®xed in the ¯uid. The center of the Ith particle moves
instantaneously with velocity VI, while the particle rotates with angular velocity OOOI. The
undisturbed ¯uid velocity ®eld measured with respect to an origin situated at O by an observer
at rest is given by the general expression

v1 � vO � oooO � xO � SO � xO � E:xOxO, �1�
where the radius vector xO is measured from O. We have no need for the corresponding
pressure ®eld p1. The undisturbed approach velocity vO, angular velocity oooO, and shear-rate
dyadic SO are all evaluated at O. Each depends upon the location of O. However, the shear-
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rate gradient triadic E is a constant of the ¯ow ®eld, independent of location. With no loss of
generality, SO is symmetric and Eijk � Eikj. (Henceforth, majuscule I, J, K superscripts will be
used to refer to the particle number and minuscule indices i, j, k to tensorial components.
Einstein's summation convention applies to the latter.) Since v1 is a solenoidal ®eld, SO

ii � 0
and Eiik � 0. Obviously, at a di�erent reference point, say P, vP, oooP and SP can easily be
evaluated for a given vector displacement aOP from O to P:

vP � vO � oooO � aOP � SO � aOP � E:aOPaOP, �2a�

oooP � oooO � 1

2
eee:
�
E � aOP ÿ �E � aOP�T

�
, �2b�

SP � SO �
�
E � aOP � �E � aOP�T

�
: �2c�

Here, eee is the permutation triadic, and ���T is the RHS transposition operator. Obviously, for
homogeneous shear ®elds, ooo and S are independent of location, since E � 0.
Assuming creeping ¯ow, the ¯ow ®eld in the presence of the spheres is governed by Stokes

equations of motion:

mr2v � rp, r � v � 0, �3�
subject to the no-slip velocity conditions on all particle boundaries:

v � VI � OOOI � xI on all @SI �I � 1,2, . . . ,N�, �4�
where @SI denotes the boundary of the Ith sphere and xI is the radius vector measured from
the center of particle I. As jxj41 the disturbance velocity generated by the motion of the
particles vanishes, whence v4v1.
We seek to obtain expressions for the drag forces and torques exerted on each of the

individual N spheres in terms of the translational and angular velocities of all of the spheres
plus the undisturbed shear rate and shear-rate gradient. This information will subsequently
enable us to obtain explicit results for the respective Stokes resistance tensors in the case of
two-spheres immersed in a general quadratic ¯ow. In turn, this will eventually furnish the
translational and angular velocities of a pair of freely suspended spheres in an axisymmetric
Poiseuille ¯ow.

3. Analysis and results

3.1. N-particle system

De®ne a disturbance velocity ®eld u and accompanying pressure ®eld q as

v � v1 � u, p � p1 � q: �5�
Obviously, the ®elds (u, q ) are governed by the Stokes equations, vanish at in®nity, and satisfy
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the respective boundary conditions

uI � �VI ÿ vI� � �OOOI ÿ ooo I� � xI ÿ SI � xI ÿ E:xIxI on @SI �I � 1,2, . . . ,N�: �6�

Note that v1 appearing above is not expressed in terms of a single, ¯uid-®xed, reference point,
but is, rather, expressed in terms of respective reference points permanently ®xed in each of the
particles (from which points the respective position vectors xI are measured). That is, in the
explicit expression (6) for the boundary condition on the surface of the Ith sphere, the
pertinent reference point lies at the center of that sphere. Thus, SI, vI and ooo I are the respective
shear rate, translational and angular velocities of the undisturbed velocity ®eld evaluated at the
center of the Ith sphere. These velocities are, of course, known for a given instantaneous
con®guration of the N-particle system when the undisturbed ¯ow ®eld is speci®ed. Due to the
fact that S changes with location, the solution scheme used here represents a modi®cation of
that utilized by Brenner and O'Neill (1972) to derive the Stokes resistance tensors for
multiparticle systems subjected to linear (i.e., homogeneous) shear ®elds.
Owing to linearity, the solution for (u, q ) can be expressed as the sum

u �
XN
1

uI, q � m
XN
1

qI, �7�

where each of the ®elds (uI,qI) is governed by the Stokes equations (3) (with m � 1), vanish at
in®nity, and satisfy the following boundary conditions:

uI � �VI ÿ vI� � �OOOI ÿ ooo I� � xI ÿ SI � xI ÿ E:xIxI on @SI �8a�

and

uI � 0 on all @SJ �J 6� I�: �8b�

Again, owing to the linearity of the Stokes equations, the general solution for the (uI,qI) ®elds
and the corresponding stress ®elds pppI is

uIi � UVI
ij

�
V I

j ÿ vIj

�
�U OI

ij

�
OI

j ÿ o I
j

�
�U SI

ijkS
I
jk �UEI

ijklEjkl, �9a�

qI � QVI
j

�
V I

j ÿ vIj

�
�QOI

j

�
OI

j ÿ o I
j

�
�QSI

jk S
I
jk �QEI

jklEjkl, �9b�

pIni � PVI
nij

�
V I

j ÿ vIj

�
�POI

nij

�
OI

j ÿ o I
j

�
�PSI

nijkS
I
jk �PEI

nijklEjkl, �9c�

where the tensor ®elds (UVI,QVI), (UOI,QOI), (USI,QSI), (UEI,QEI) satisfy Stokes equations:

@2UVI
ij

@xm@xm
� @Q

VI
j

@xi
,
@UVI

ij

@xi
� 0; �10a�
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@2U OI
ij

@xm@xm
� @Q

OI
j

@xi
,
@U OI

ij

@xi
� 0; �10b�

@2U OI
ijk

@xm@xm
� @Q

OI
jk

@xi
,
@U OI

ijk

@xi
� 0; �10c�

@2UEI
ijkl

@xm@xm
� @Q

EI
jkl

@xi
,
@UEI

ijkl

@xi
� 0; �10d�

and the boundary conditions

UVI
ij �

�
dij on @SI,
0 on @SJ �J 6� I�

�
; �11a�

U OI
ij �

�
eijkxI

k on @SI,
0 on @SJ �J 6� I�

�
; �11b�

U SI
ijk �

8><>:ÿ
1

2

�
dijxI

k � dikxI
j

�
on @SI,

0 on @SJ �J 6� I�

9>=>;; �11c�

UEI
ijkl �

�ÿdijxI
kx

I
l on @SI,

0 on @SJ �J 6� I�
�
: �11d�

In the foregoing equations, the respective contributions arising from each of the four terms
appearing in Eq. (8a) are separately evaluated and the results superimposed. Thus, for instance,
UVI is a�ected only by the velocity di�erence VI ÿ vI upon setting OOOI ÿ ooo I, SI and E equal to
zero over @SI (and over all other @SJ). The corresponding stress ®elds are

PVI
nij � ÿdniQVI

j �
@VVI

ij

@xn
� @V

VI
nj

@xi
, �12a�

POI
nij � ÿdniQOI

j �
@V OI

ij

@xn
� @V

OI
nj

@xi
, �12b�

PSI
nijk � ÿdniQSI

jk �
@V SI

ijk

@xn
� @V

SI
njk

@xi
, �12c�

PEI
nijkl � ÿdniQEI

jkl �
@V EI

ijkl

@xn
� @V

EI
njkl

@xi
: �12d�
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Hence, from Eqs. (10) and (11), it is obvious that the tensor ®elds �UVI,QVI,PPPVI�,
�UOI,QOI,PPPVI�, �USI,QSI,PPPSI�, and �UEI,QEI,PPPEI� depend upon the con®guration of the N-
particle system and the respective sphere radii, but not on the ¯uid viscosity nor on the forcing
terms VI ÿ vI,OOOI ÿ ooo I,SI and E.

3.1.1. Hydrodynamic drag forces and torques
The hydrodynamic drag force fI exerted on particle I and the torque tI about the center of

sphere I are obtained from the total contribution of all stress ®elds pppK �K � 1,2, . . . ,N �:

fI � m
XN
K�1

�
dSI

n � pppK dS, tI � m
XN
K�1

�
dS I

xI � �n � pppK� dS: �13�

Substituting Eq. (9c) into Eq. (13) yields

ÿ1
m

fI �
XN
K�1

KIK � �VK ÿ vK� � DIK � �OOOK ÿ oooK� � FFFIK:SK � FIK..
.
E, �14a�

ÿ1
m

tI �
XN
K�1

CIK � �VK ÿ vK� � LIK � �OOOK ÿ oooK� �CCCIK:SK � TIK..
.
E: �14b�

The triple-dot operation in Eq. (14), e.g., FIK..
.
E, means that the ith component of the resulting

vector is equal to F IK
ijklEjkl. The drag resistance tensors KIK,DIK,FFFIK,FIK,CIK,LIK,DIK,CCCIK,FIK

and T IK are obtained from the stress ®elds de®ned in Eq. (12) as:

K IK
ij � ÿ

�
@S I

PVK
nij nn dS, DIK

ij � ÿ
�
@SI

POK
nij nn dS, �15a�

FIK
ijk � ÿ

�
@SI

PSK
nijknn dS, F IK

ijkl � ÿ
�
@SI

PEK
nijklnn dS, �15b�

C IK
ij � ÿeimp

�
@SI

xI
mP

VK
npj nn dS, LIK

ij � ÿeimp

�
@S I

xI
mP

OK
npj nn dS, �15c�

CIK
ijk � ÿeimp

�
@SI

xI
mP

SK
npjknn dS, T IK

ijkl � ÿeimp

�
@SI

xI
mP

EK
npjklnn dS: �15d�

Eq. (14) constitutes the general expression sought for the drag force and the torque exerted
on any sphere in the system. It represents a generalization of the known case (Brenner and
O'Neill, 1972) for linear undisturbed velocity ®elds, which being linear necessarily possess
spatially uniform angular velocities and shear rates. Clearly, from Eqs. (10), (11), (12) and (15),
the drag tensors depend only upon the spatial positions of the centers of the spheres and upon
their radii. It might appear from Eq. (15) that the solutions for all of the velocity and pressure
®elds, namely �UVI,QVI�, �UOI,QOI�, �USI,QSI� and �UEI,QEI�, are required to calculate the drag
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coe�cients. However, this is not so! Rather, upon utilizing the Lorentz reciprocal theorem it
can be shown (Appendix A) that knowledge of the solutions of only the relatively simplest
®elds, namely the respective translational and rotational ®elds (UVI,QVI) and �UOI,QOI�, su�ce
to determine all of the drag coe�cients.
The resistance tensors possess various symmetry properties. Symmetry attributes of these

tensors for the respective cases of translational and rotational motions, as well as for
homogeneous shear, were addressed by Brenner and O'Neill (1972). Appendix B provides a
short recapitulation of these properties, as well as material on the uniqueness and symmetry
properties of the new resistance tensors F and T arising from the existence of quadratic terms
in the undisturbed ¯uid velocity ®eld.

3.2. Two-body system

The geometry of a two-sphere system is characterized by the distance 2H between the sphere
centers, their respective radii r1 and r2, and the direction of a unit vector e pointing from the
center of particle 1 to that of particle 2. In Eq. (15), it was shown that the resistance tensors
depend only upon system con®guration and particle size. Thus, these tensors necessarily
possess tensorial forms expressible solely in terms of e, the isotropic idemtensor I and/or the
permutation tensor eee, as well as scalar or pseudoscalar multiples thereof depending only upon
r1,r2 and H, such that the various terms appearing in the explicit representations of these
tensors accord with their known symmetry properties and parity (i.e., their true- or pseudo-
tensor properties). Hence,

K IK
ij � kIKA dij � kIKB eiej, LIK

ij � lIKA dij � lIKB eiej, �16a�

DIK
ij � d IKeijkek, C IK

ij � cIKeijkek, �16b�

FIK
ijk � fIK

A

ÿ
dijek � dikej

�� fIK
B eiejek, CIK

ijk � cIK�eijlelek � eiklelej�, �16c�

F IK
ijkl � f IK

A dijdkl � f IK
B dijekel � f IK

C dkleiej � f IK
D

ÿ
dikejel � dilejek

�� f IK
E eiejekel, �16d�

T IK
ijkl � tIKA �eijkel � eijlek� � tIKB eijmemdkl � tIKC eijmemekel: �16e�

The last two expressions are both new. All the tensorial components (lower case letters) are
functions only of H, r1 and r2. The k, l, c, d, f and c coe�cients appearing in Eq. (16) were
implicitly or explicitly calculated by earlier investigators, numerically and/or analytically. The f
and t coe�cients appearing in Eq. (16) are calculated here for the ®rst time (using the method
of re¯ections; see Appendix C). For the sake of completeness, as well as to establish a common
notation among the known results of prior investigations, analytical expressions for each of the
resistance tensors are provided in Appendix D. Their respective orders of accuracy were chosen
such that subsequent calculations of the migration velocities of the freely suspended spheres in
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quadratic ¯ows (the latter characterized by a length scale R0) could be consistently obtained up
to O��r1=H �a�r2=H �b�r1=R0�g�r2=R0�d�, in which a� b� g� d<6.

3.2.1. Two spheres freely suspended in quadratic ¯ows
The general solution for two spheres freely suspended in quadratic ¯ows can be obtained

from Eqs. (14) and (16). Since fI and tI each vanish when no external forces or couples act
upon either of the spheres (the neutrally-buoyant case) the four vector equations (14) can be
solved for the `slip velocity' vectors UI ÿ vI and OOOI ÿ ooo I (I � 1,2) in terms of the known values
of SI and E characterizing the undisturbed ®eld. The resulting 12 scalar linear equations can be
presented in the partitioned matrix (tensor) form:

2664
K11 D11 K12 D12

C11 L11 C12 L12

K21 D21 K22 D22

C21 L21 C22 L22

3775
26664

V�1� ÿ v�1�

OOO�1� ÿ ooo �1�

V�2� ÿ v�2�

OOO�2� ÿ ooo �2�

37775 � ÿ

26666666664

FFF11:S�1� � FFF12:S�2� �
ÿ
F11 � F12

�
..
.
E

CCC11:S�1� �CCC12:S�2� �
ÿ
T11 � T12

�
..
.
E

FFF21:S�1� � FFF22:S�2� �
ÿ
F21 � F22

�
..
.
E

CCC21:S�1� �CCC22:S�2� �
ÿ
T21 � T22

�
..
.
E

37777777775
: �17�

Eq. (17) is of the form R� X � Y, where R is the 12 � 12 LHS grand resistance matrix, X is
the 12 � 1 generalized slip velocity column vector, and Y is the 12 � 1 RHS generalized
undisturbed ¯ow column vector.
The grand resistance matrix R is both positive de®nite and symmetric (see Appendix B). As

such, its inverse exists. The inverse matrix Rÿ1 is a second-rank tensor of 12 dimensions,
possessing a representation which depends only upon scalar or pseudoscalar multiples of the
basic physical directional quantities entering in the problem, namely the unit vector e, the
idemtensor I and permutation tensor eee. It can easily be shown that its general form is

Rÿ1 �

2664
R11 P12 R13 P14

P21 R22 P23 R24

R31 P32 R33 P34

P41 R42 P43 R44

3775, �18�

where RIJ is a second-rank true tensor and PIJ a second-rank pseudo-tensor. Hence,

RIJ
ij � aIJdij � bIJeiej, PIJ

ij � gIJeijkek, �19�

where the coe�cients aIJ,bIJ, and (I,J � 1,2,3,4) are constants depending upon r1,r2 and H.
Upon post-multiplying Rÿ1 by Y it follows from Eqs. (16), (18) and (19) that the

translational and rotational slip velocities of the spheres, respectively, possess the general forms

V I
i ÿ vIi � ~F

I

ijklEjkl �
X2
K�1

~F
IK

ijkS
K
jk, �20a�
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OI
i ÿ o I

i � ~T
I

ijklEjkl �
X2
K�1

~C
IK

ijkS
K
jk, �20b�

in which

~F
IK

ijk � ~f
IK

A

ÿ
dijek � dikej

�� ~f
IK

B eiejek, ~C
IK

ijk � ~c
IK�eijlelek � eiklelej�, �21a�

~F
IK

ijkl � ~f
I

Adijdkl � ~f
I

Bdijekel � ~f
I

Cdkleiej � ~f
I

D

ÿ
dikejel � dilejek

�� ~f
I

Eeiejekel, �21b�

~T
I

ijkl � ~t
I
A�eijkel � eijlek� � ~t

I
Beijmemdkl � ~t

I
Ceijmemekel: �21c�

Lower case symbols appearing beneath the tildes in the above equations are constants (not
equal to the constants in Eq. (16)), depending only upon r1,r2 and H. Eqs. (20) and (21)
constitute general expressions for the motions of the two spheres moving through quadratic
¯ow ®elds. Obviously, use of Eq. (2c) makes it possible to rewrite Eq. (20) such that the ®nal
expression for the slip velocity vector depends only upon a shear rate evaluated at a single
arbitrary point O rather than upon the respective pair of local shear rates at the centers of the
two spheres. The representation given in Eq. (20) is preferable, since it does not distinguish
between the centers of the two particles. All of the coe�cients appearing in Eq. (21) can be
directly calculated from the grand resistance matrix R and generalized ¯ow vector Y.
Upon applying the method-of-re¯ections-derived expressions for the grand resistance matrix

and the generalized ¯ow vector from Appendix D, the translational slip velocity of sphere 1 is
found to be

ÃV
�1� ÿ Ãv

�1� � 1

3
r̂21

ÃE :I� r̂22e
3
2

�
5

192
ÃE :I� 5

32
ee: ÃE ÿ 3

64
ÃE :ee� 5

64
ee � ÃE :Iÿ 35

64
eeee..

.
ÃE

�

�5
8
r̂2e22

�
1ÿ 9

16
e1e2

�
eee: ÃS

�2� � 1

16
r̂2e42e � ÃS

�2� �O�6�,
�22�

where

e1 � r1=H, e2 � r2=H,

and in which the symbol O(N ) denotes an error of O�en1em2 r̂ p
1 r̂

q
2�, where n�m� p� q � N. Here

and henceforth, all careted symbols are dimensionless. Velocities and lengths are respectively
scaled with respect to a characteristic velocity V0 and characteristic length R0 of the quadratic
¯ow. Thus,

ÃS � SR0=V0, ÃE � ER2
0=V0, r̂1 � r1=R0, r̂2 � r2=R0:

To avoid possible confusion between superscripts denoting both exponential powers and
particle number labeling, parentheses were added to the latter superscripts in Eq. (22). An
expression comparable to Eq. (22) may be written down for the velocity of sphere 2 upon
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interchanging all 1 and 2 superscripts and subscripts while replacing e by ÿe, where e denotes
a unit vector pointing from the center of particle 1 to the center of particle 2.
Schonberg et al. (1986) addressed the more limited two-dimensional case of a two-sphere

system in a plane Poiseuille ¯ow. He obtained an O(3) solution that is identical to the
penultimate term of Eq. (22). Note that although FIK and TIK are each only of O(4), this
limited accuracy nevertheless su�ces in order to obtain O(6) results for the particle velocities
after inversion of the grand resistance matrix (albeit only for neutrally-buoyant particles).
The RHS of Eq. (22) determines the slip velocity of particle 1 relative to the undisturbed

velocity v�1�. The mean velocity VCG of the `center of gravity' (i.e., center of volume) of the
two-body system in the case of two identical spheres is

ÃVCG � 1

2

�
ÃV
�1� � ÃV

�2�
�
� 1

2

ÿ
Ãv
�1� � Ãv

�2��� 1

3
r̂2 ÃE :I

�r̂2e3
�

5

192
ÃE :I� 5

32
ee: ÃE ÿ 3

64
ÃE :ee� 5

64
ee � ÃE :Iÿ 35

64
eeee..

.
ÃE

�

� 5

16
r̂e2
�
1ÿ 9

16
e2

�
eee:

�
ÃS
�2� ÿ ÃS

�1�
�
� 1

32
r̂e4e �

�
ÃS
�2� ÿ ÃS

�1�
�
�O�6�:

�23�

In e�ect, the latter equation furnishes the instantaneous velocity of the midpoint of the line
segment joining the sphere centers. For particles of equal size and density this velocity can be
viewed as the center-of-mass velocity of the system. Obviously, the lateral migration velocity
vanishes for a monodisperse suspension immersed in a simple shear ¯ow, for which
circumstances r � r1 � r2,e � e1 � e2,S�1� � S�2�, and E � 0. However, in quadratic ¯ows, E is
nonzero and S�1� 6� S�2�. Hence, in general, instantaneous lateral migration across the undisturbed
streamlines exists for two spheres freely suspended in a quadratic ¯ow. Subsequently, we will
show that this instantaneous migration is, in fact, permanent in time for a two-sphere system
immersed in an axisymmetric Poiseuille ¯ow.
The last two terms in Eq. (23) could have been rewritten exclusively in terms of E and e by

using Eq. (2c). However, we prefer to retain Eq. (23) in its present form, since it provides
better physical insight into the source of the penultimate term in Eq. (23), and Ð as discussed
in the next section Ð the latter contribution proves to be most signi®cant.

3.2.2. Two spheres freely suspended in an axisymmetric Poiseuille ¯ow
Consider a system consisting of two neutrally-buoyant spheres suspended in an unbounded

Poiseuille ¯ow. Introduce a circular cylindrical coordinate system (R,f,z) whose origin lies
along the tube's axis of symmetry, and de®ne the corresponding set of unit vectors (iR,if,iz).
The dimensionless velocity ®eld, shear rate, and shear-rate gradient are, respectively,

Ãv1 �
ÿ
1ÿ R̂

2
�
iz, ÃS � ÿR̂�iRiz � iziR�, ÃE � ÿiz�Iÿ iziz�: �24�

Here, the centerline velocity V0 was used to scale velocities, whereas the radius R0 (where the
local ¯uid velocity is zero) was used to scale lengths. With the centers of the spheres
respectively located at (R1,f1,z1) and (R2,f2,z2), and with iR1

and iR2
denoting the respective
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unit radial vectors pointing towards the particle centers, we have that

ÃS
�1� � ÿR̂1

ÿ
iR1

iz � iziR1

�
, ÃS

�2� � ÿR̂2

ÿ
iR2

iz � iziR2

�
: �25�

Interest focuses on the radial migration, if any, of the two-body system. In this context we note
that the radial component of the center-of-gravity velocity is given by

V̂RCG
�

ÃVCG �
�
R̂1iR1

� R̂2iR2

�
R̂CG

, �26�

where

R̂CG �
h
R̂

2

2 � R̂
2

1 � 2R̂1R̂2 cos
ÿ
f2 ÿ f1

�i1=2
: �27�

Substitution of Eqs. (24)±(26) into Eq. (23) yields

V̂RCG
� �iz � e�

R̂CG

(
5

8
r̂e2
�
1ÿ 9

16
e2
�h

R̂
2

2

ÿ
iR2
� e�2ÿR̂2

1

ÿ
iR1
� e�2i� 1

32
r̂e4
�
R̂

2

2 ÿ R̂
2

1

�

ÿ 15

64
r̂2e3

�
1� 7

3
�iz � e�2

�h
R̂1

ÿ
iR1
� e�� R̂2

ÿ
iR2
� e�i�O�6�

)
: �28�

Obviously, Eq. (28) must remain unaltered if su�ces 1 and 2 are interchanged (in which case e
must also be replaced by ÿe). Now,

e � R̂2iR2
ÿ R̂1iR1

� iz�ẑ2 ÿ ẑ1�
2Ĥ

: �29�

Hence,

R̂
2

2

ÿ
iR2
� e�2ÿR̂2

1

ÿ
iR1
� e�2� �R̂2

2 ÿ R̂
2

1

�hR̂2

2 � R̂
2

1 ÿ 2R̂1R̂2 cos
ÿ
f2 ÿ f1

�i
4Ĥ

2
, �30a�

R̂2

ÿ
iR2
� e�� R̂1

ÿ
iR1
� e� �

�
R̂

2

2 ÿ R̂
2

1

�
2Ĥ

, �30b�

where 2Ĥ is the dimensionless center-to-center distance between spheres, namely

2Ĥ �
h
R̂

2

2 � R̂
2

1 ÿ 2R̂1R̂2 cos
ÿ
f1 ÿ f2

�� �ẑ2 ÿ ẑ1�2
i1=2

: �31�

Substitution of Eqs. (29) and (30) into Eq. (28) further simpli®es the expression for the radial
velocity, yielding
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VRCG
� ÿ

�
R̂

2

2 ÿ R̂
2

1

�
�ẑ2 ÿ ẑ1�

8<: 5

64
r̂e2
�
1ÿ 9

16
e2
�h

R̂
2

2 � R̂
2

1 ÿ 2R̂1R̂2 cos
ÿ
f1 ÿ f2

�i
Ĥ

3
R̂CG

� 1

64
r̂e4

1

ĤR̂CG

ÿ 15

256
r̂2e3

"
1ÿ 7

12

�ẑ2 ÿ ẑ1�2

Ĥ
2

#
1

Ĥ
2
R̂CG

9=;: �32�

4. Conclusions

Several important conclusions may be drawn from Eq. (32). The expression in curly
parentheses is always positive. As such, the direction of lateral migration will be determined by
the relative radial and axial locations of the spheres, but not by their relative circumferential
location. The latter polar angle di�erence a�ects only the magnitude of the radial velocity. It is
also clear from Eq. (32) that the magnitude and direction of the radial velocity is indi�erent
to particle numbering. For the special case of two spheres located at equal radial distances
(R2 ÿ R1 � 0,z2 ÿ z1 6� 0) no radial migration is predicted. However, in the case where
z2 ÿ z1 6� 0 and f1 ÿ f2 � p (corresponding to two particles placed on either side of the
centerline with one situated ahead of the other), RCG vanishes. As a result, both the numerator
and denominator of Eq. (32) vanish. In this limit, radial migration exists in a direction away
from the centerline, where the leading particle migrates towards the centerline whereas the
trailing particle moves away from the centerline. (This fact can be deduced simply from Eq.
(22).) This result was also obtained by Schonberg et al. (1986) for the case of a two-particle
system suspended in a plane Poiseuille ¯ow. The case of particles located at equal axial
positions (z2 ÿ z1 � 0) is much less important, since particles occupying di�erent radial
positions will experience di�erent axial velocities and, hence, will soon thereafter acquire
di�erent axial positions.
Consider two generic cases:

(A) Particle 1 is located closer to the ¯ow symmetry axis (R1<R2), and is axially leading
particle 2 (z1 > z2);
(B) Particle 1 is located closer to the ¯ow symmetry axis (R1<R2) and is axially trailing
particle 2 (z1<z2).

In case A, the radial migration is positive and the system tends to migrate away from the
symmetry axis of the ¯ow. Notice that this con®guration will persist since particle 1 possesses a
higher axial velocity. Thus, the system moves radially from regions of low shear rates to higher
ones. This result contrasts with the commonly accepted notion that particles always tend to
migrate from regions of high to low shear rate (and consequently that a positive particle-¯ux
di�usion coe�cient can be de®ned to account for the role of shear-rate gradients in e�ecting
the transport of non-Brownian particles in concentrated suspensions). Such `reverse migration'
was observed experimentally by Shauly et al. (1997), who wrote that ``particles can migrate
against (emphasis ours) concentration gradients.'' We suggest that the mechanism that alters
the migration direction is caused by the shear-rate gradients explored here.
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Super®cially, it seems that the foregoing important conclusions are reversed in case B where
the inner particle 1 lags behind particle 2. However, this con®guration would last for only a
brief period of time, since the inner particle possesses a higher axial velocity and hence would
soon pass the outer, slower-moving particle. Thus, the con®guration of case A will eventually
be recovered, whereupon the circumstances governing that case would, henceforth, govern the
subsequent behavior of the system.
The most signi®cant term in Eq. (32) contributing to the migration behavior, described

above, arises from the di�erence in shear rates existing at the centers of the spheres (which is
re¯ected in the penultimate term in Eq. (32)). We suggest without proof that this would also
likely occur for ¯ows of higher order than quadratic, in which case the contention that lateral
migration occurs from low to high shear rate regions would not be restricted to quadratic
¯ows. The magnitude of this term suggests that the e�ect is linearly proportional to both the
volumetric particle concentration and to the variation in the undisturbed shear rate occurring
on a length scale corresponding to the distance between sphere centers.
In summary, this paper has addressed the contribution made by the quadratic term

appearing in the undisturbed velocity ®eld to the drag forces and torques exerted on the
individual spheres in a dilute, albeit hydrodynamically interacting, multiparticle system. The
method of re¯ections was applied (Appendix C) to obtain asymptotic expressions for the drag
forces and torques exerted on each of the spheres in a two-sphere system immersed in a general
quadratic ¯ow in terms of their center-to-center spacing and the orientation of their line-of-
centers relative to the principal axes of the undisturbed shear. Issues of the uniqueness and
symmetry properties of the new intrinsic Stokes resistance coe�cients thereby calculated were
analyzed in Appendix B. Results obtained from the general solution were employed to derive
the respective velocities of two neutrally- buoyant spheres freely suspended in unbounded
quadratic ¯ows. The additional drag force arising from the quadratic terms, above and beyond
the contributions arising for linear shear ¯ows, was shown to cause cross-streamline motion of
the center of gravity of the two-sphere system. The particular case of two identical, freely
suspended, hydrodynamically-interacting spheres in an axisymmetric Poiseuille ¯ow was
deduced from these more general results. It was shown in this case that the center of gravity of
the two-body system migrates laterally from regions of low to high shear rates.
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Appendix A.

The Lorentz reciprocal theorem (Happel and Brenner, 1983) for Stokes ¯ows states for a
given instantaneous geometric con®guration of a hydrodynamic system that two di�erent ¯uid
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®elds, say, (v 0,p 0,ppp 0) and (v 00,p 00,ppp 00), arising from two di�erent velocity or stress ®elds prevailing
at the particle surfaces and/or external boundaries, satisfy the following integral condition over
the boundaries:�

@S

v 0ip
00
innn ds �

�
@S

v 00i p
0
innn dS, �A1�

where (v,p,ppp) are the respective velocity, pressure, and stress ®elds, n is a unit normal vector,
and @S connotes all the internal or external boundaries of the ¯uid.
Denote by (v 0,p 0,ppp 0) the trio of ®elds generated by the translational motion VI of particle I

suspended in an otherwise quiescent ¯ow ®eld (i.e., an undisturbed velocity ®eld which vanishes
at in®nity) and where simultaneously all the other particles are at rest. Explicitly, this trio of
®elds is of the form �UVI

ij ,Q
VI
j ,PVI

nij �V I
j , where the dyadic velocity ®eld UVI

ij satis®es boundary
conditions (11a). In addition, denote by (v 00,p 00,ppp 00) the trio of ®elds generated by the action of
a homogeneous shear-rate gradient E over particle J with all the particles at rest; explicitly, this
latter trio of ®elds is of the form �UEJ

ijkl,Q
EJ
jkl ,P

EJ
nijkl�Ejkl, where the tetradic velocity ®eld UEJ

ijkl

satis®es boundary conditions (11d), with J replacing I. Since VI and E are position-
independent, arbitrary tensors, introduction of these velocity and stress ®elds into Eq. (A1)
yields�

SI@SI

U VI
ij P

EJ
niklmnn dS �

�
SI@SI

U EJ
iklmP

VI
nijnn dS �A2�

for any I,J � 1,2, . . . ,N.Substitution of boundary conditions (11a), (11d) into Eq. (A2) yields

ÿ
�
@SI

PEJ
njklmnn dS �

�
@SJ

xJ
mx

J
lP

VI
nkjnn dS: �A3�

However, the LHS of Eq. (A3) is equal to the drag resistance tensor F IJ
jklm de®ned in Eq. (15).

Hence,

F IJ
jklm �

�
@SJ

xJ
mx

J
lP

VI
nkjnn dS: �A4�

Thus, the drag coe�cient arising from the quadratic portion of the undisturbed ¯ow can easily
be obtained from knowledge of the triadic stress ®eld PVI

nkj by an elementary quadrature.
Determination of the latter stress ®eld requires solving a very much simpler boundary-value
problem than would otherwise appear necessary, had one actually to solve the original
quadratic ®eld problem to obtain the stress ®eld PEK

nijkl seemingly required by Eq. (15) to
compute the tensor F IK

ijkl via the de®ning formula

F IK
ijkl � ÿ

�
dSI

PEK
nijklnn dS:

Explicitly, modulo the quadrature required in Eq. (A4), to calculate F one need only to solve
the `elementary' boundary-value problem arising from the translational motion of a single
particle in the multiparticle system in an otherwise quiescent ¯uid within which all the other
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particles remain at rest. Analogously,

T IJ
jklm �

�
@SJ

xJ
mx

J
lP

OI
nkjnn dS: �A5�

A similar approach requiring explicit knowledge only of the ®eld generated by the rotation of
the particle of interest in a ¯uid (where all other particles as well as the ¯uid at in®nity are at
rest) can be utilized to obtain T in Eq. (A5). In this manner, all the resistance tensors de®ned
generically in Eq. (15) can be calculated.

Appendix B.

The Stokes resistance tensors de®ned in Eq. (15) satisfy an array of symmetry-related
properties, most of which can easily be obtained by a simple application of the Lorentz
reciprocal theorem. Resistance tensors for translational motions, rotational motions, and
homogeneous shear ¯ows have systematically been investigated in the past, to the extent that
those tensors describing these classes of motion may be regarded as known for all possible
combinations of sphere sizes and separation distances. Accordingly, we shall recapitulate only
those properties pertinent to our analysis. Uniqueness and symmetry (both kinetic and
geometric) properties of the resistance tensors F and T for the shear-rate gradient case are also
brie¯y discussed in what follows.
The following kinetic symmetry relations apply to the grand resistance matrix R:

K IJ
ij � K JI

ji , DIJ
ij � C JI

ji , LIJ
ij � LJI

ji : �B1�

Due to the symmetry of the shear-rate tensor we also have that

FIJ
ijk � FIJ

ikj, CIJ
ijk � CIJ

ikj: �B2�

Symmetry of the triadic E with respect to its second and third tensor indices results in the
following symmetry properties of F and T:

F IJ
ijkl � F IJ

ijlk, T IJ
ijkl � T IJ

ijlk: �B3�

From the divergence-free condition Eiij � 0 imposed by ¯uid incompressibility upon E, we ®nd
that the tensor F IJ

ijkl is unique only up to an additive fourth-rank tensor of the form Aildjk,
where Aij is an arbitrary second-rank tensor. A similar property exists for T. Thus, F IJ

ijkl �
Aildjk and T IJ

ijkl � Bildjk constitute equally valid representations of the respective resistance
tensors. The drag force and torque exerted on a particle are independent of the respective
choices of the arbitrary tensors A and B.

Appendix C.

Consider two spherical particles of respective radii r1 and r2 whose centers are separated by
a distance 2H, and which are suspended in a ¯uid of viscosity m. The velocity and pressure
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®elds (u,mq) are governed by Stokes equations. The velocity ®eld satis®es the following
conditions over the particles boundaries (see Eq. (11d)):

ui �
�ÿEijkxjxk on @S1,

0 on @S2,

�
�C1�

where x is measured from the center of sphere 1.
The general solutions for the velocity, pressure, and stress ®elds (see Eqs. (9a)±(9c)) are,

respectively, of the forms

ui � UijklEjkl, q � QjklEjkl, pni � PnijklEjkl: �C2�
Here, the superscript E1 has been suppressed from the tensorial ®eld symbols in order to
simplify the appearance of the expressions which follow. From Eqs. (C1) and (C2),

Uijkl �
�ÿdijx lxk on @S1,

0 on @S2:

�
�C3�

The ®elds (U, Q, PPP) may be obtained by using the method of re¯ections (Happel and Brenner,
1983):

Uijkl � U
�1�
ijkl �U

�2�
ijkl �U

�3�
ijkl � � � � , �C4a�

Qjkl � Q�1�jkl �Q�2�jkl �Q�3�jkl � � � � , �C4b�

Pnijkl � P�1�nijkl �P�2�nijkl �P�3�nijkl � � � � , �C4c�

where ®elds with odd-numbered superscripts satisfy the requisite conditions imposed at the
boundary of particle 1 (but not those at the boundary of particle 2), whereas ®elds with even-
numbered superscripts satisfy the boundary conditions on the surface of particle 2, but not 1.
Explicitly,

U
�1�
ijkl � ÿdijxkxl on @S1, �C5a�

U
�2�
ijkl � ÿU �1�ijkl on @S2, �C5b�

U
�3�
ijkl � ÿU �2�ijkl on @S1,etc: �C5c�

The solution for the ®rst re¯ection is easily found to be

V
�1�
ijkl � ÿr51

ÿ
r2 ÿ r21

�
H
�4�
ijkl ÿ

1

6
r31
ÿ
r2 ÿ r21

�
H
�2�
ij dkl ÿ 2

3
r51H

�2�
kl dij ÿ

1

3
r31dijdklH

�0�, �C6a�

P
�1�
jkl � ÿ

7

2
r51H

�3�
jkl ÿ

1

2
r31dklH

�1�
j , �C6b�
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where

H
�n�
i1i2...in

� � ÿ 1�n
n!

@

@xi1

@

@xi2

� � � @
@xin

�
1

r

�
, H �0� � 1

r
, �C7�

in which r � jxj. An explicit expression for the ®rst re¯ection is

u
�1�
i � ÿ

1

8
r51
ÿ
r2 ÿ r21

��35
r9
xixjxkxlEjkl ÿ 5

r7
ÿ
xixjEjkk � 2xkxjEjki � xkxlEikl

�� 1

r5
Eijj

�

�
�
1

12
r31
ÿ
r2 ÿ r21

��3xixj

r2
ÿ dij

�
dkl ÿ 1

3
r51

�
3xlxk

r2
ÿ dkl

�
dij ÿ 1

3r
r31dijdkl

�
Ejkl, �C8a�

q�1� �
�
ÿ 7

4
r51

�
5

r7
xjxkxl ÿ 1

r5
ÿ
xjdkl � xldjk � xkdjl

��ÿ 1

2
r31dkl

xj

r3

�
Ejkl: �C8b�

The drag force and torque exerted on particle 1 due to re¯ection 1 can easily be calculated as
(see Happel and Brenner, 1983)

1

m
f 1E�1�
i � 2pr31Eijj,

1

m
t1E�1�i � 0: �C9�

In lieu of calculating the second re¯ection, we use Faxen's laws to calculate the drag force
and torque exerted on particle 2 induced by the ®rst re¯ection:

f2E�2� � 6pmr2
�
u�1�

�
x�2He�pmr32

�
rq�1�

�
x�2He, �C10a�

t2E�2� � 4pmr32
�
r � u�1�

�
x�2He: �C10b�

Substitution of Eq. (C8) into Eqs. (C10a) gives

ÿ1
m
f 2E�2�
i � pr2r21

�
3

4
e1
ÿ
dij � eiej

�
dklEjkl

ÿ 6e31

��
7

64
Ejkkej ÿ 35

64
Ejklelejek

�
ei � 5

32
Ejkiejek ÿ 3

64
Eijkejek � 1

64
Eijj

�

�O
ÿ
e51
��� 1

16
pr32
h
e31
ÿ
Eikk ÿ 3Ejkkeiej

��O
ÿ
e51
�i
:

�C11�

The third re¯ection need not be calculated explicitly if the drag force and torque exerted on
particle 1 are to be calculated only to terms of O(5). Indeed, the ®eld u(2) can be determined to
the requisite order of accuracy via the force obtained in Eq. (C11). We may view this force as
the strength of the Stokeslet inducing the velocity ®eld:
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u
�2�
i � ÿ

1

8pm
f 2E�2�
j

(
dij �

x
�2�
i x

�2�
j

�r�2� �2

)
, �C12�

where the radius vector r(2) is measured from the center of particle 2. The RHS of Eq. (C11)
can be rewritten as F 21

ijklEjkl. Thus, the drag coe�cient F 21
ijkl pertaining to particle 2 due to a

quadratic ¯ow boundary condition over particle 1 can be identi®ed. The result of the
calculation appears in Appendix D.
Again using Faxen's laws, the drag force and torque induced by u(2) on particle 1 are,

respectively, found to be

f1E�3� � 6pmr1
�
u�2�

�
x�2��ÿ2He�pmr31

�
rq�1�

�
x�2��ÿ2He, �C13a�

t1E�3� � 4pmr31
�
r � u�2�

�
x�2��ÿ2He: �C13b�

Upon substituting Eq. (C12) into Eq. (C13a) we obtain

ÿ1
m
f 1E�3�
i � ÿ 9

32
pr2r21

h
e21
ÿ
dij � 3eiej

�
Ejk �O�4�

i
: �C14�

Adding the contributions of Eqs. (C9) and (C14) yields the total drag force exerted on particle
1. Upon rewriting the sum in the form F 11

ijklEjkl, it is easy to identify that portion of the drag
coe�cient pertaining to particle 1 arising from the quadratic ¯ow boundary condition on
particle 1. The result appears in Appendix D.
Similarly, the torque coe�cients T 11

ijkl and T 21
ijkl are derived using Eqs. (C10b) and (C13b).

They too appear in Appendix D. The terms F 22
ijkl,F

12
ijkl,T

22
ijkl and T 12

ijkl are simply obtained by
interchanging e1 with e2 and r1 with r2.

Appendix D.

Write e1 � r1=H and e2 � r2=H, where r1 and r2 are the respective sphere radii, 2H is the
distance between the sphere centers, and ei is the unit vector directed from the center of sphere
1 to the center of sphere 2. Denote by the symbol O(N ) in what follows an error of O�en11 en22 �
where n1 � n2 � N. The drag resistance tensors of the two-sphere system are then given by

K 11
ij � 6pr1

"
dij � 9

64
e1e2

ÿ
dij � 3eiej

�� 3

64
e1e2

�
ÿ 2e21 �

27

4
e1e2 � 3e22

�
eiej

� 3

128
e1e2

�
e21 �

27

32
e1e2 � 3e22

�ÿ
dij ÿ eiej

��O�6�
#
,
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K 22
ij � 6pr2

"
dij � 9

64
e1e2

ÿ
dij � 3eiej

�� 3

64
e1e2

�
ÿ 2e22 �

27

4
e1e2 � 3e21

�
eiej

� 3

128
e1e2

�
e22 �

27

32
e1e2 � 3e21

�ÿ
dij ÿ eiej

��O�6�
#
,

K 12
ij � ÿ

9

4
pr1

"
e2
ÿ
dij � eiej

�ÿ e2
6

�
e21 ÿ

27

4
e1e2 � e22

�
eiej � e2

12

�
e21 �

27

16
e1e2 � e22

�ÿ
dij ÿ eiej

�

�O�5�
#
,

K 21
ij � K 12

ij ;

L11
ij � 8pr31

�
dij � 3

64
e2e31

ÿ
dij ÿ eiej

��O�6�
�
,

L22
ij � 8pr32

�
dij � 3

64
e2e31

ÿ
dij ÿ eiej

��O�6�
�
,

L12
ij � 0:5pr31

h
e32
ÿ
dij ÿ eiej

��O�5�
i
,

L21
ij � L12

ij ;

C 11
ij � D11

ji � ÿ
9

16
pr1r2

�
e31eijlel �O�5��,

C 22
ij � D22

ji � �
9

16
pr1r2

�
e32eijlel �O�5��,

C 12
ij � D21

ji � �
3

2
pr1r2

�
e21eijlel �O�4��,

C 21
ij � D12

ji � ÿ
3

2
pr1r2

�
e22eijlel �O�4��;

F11
ijk � ÿ

9

4
pr1r2

�
5

4
e31eiejek �

1

32
e51
ÿ
dijek � dikej

��O�7�
�
,
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F22
ijk � �

9

4
pr1r2

�
5

4
e32eiejek �

1

32
e52
ÿ
dijek � dikej

��O�7�
�
,

F12
ijk � ÿ6pr1r2

�
5

8
e22eiejek �

1

32
e42
ÿ
dijek � dikej

��O�6�
�
,

F21
ijk � �6pr1r2

�
5

8
e21eiejek �

1

32
e41
ÿ
dijek � dikej

��O�6�
�
;

C11
ijk �

3

64
pr21r2

h
e61�eijlelek � eiklelej� �O�8�

i
,

C22
ijk �

3

64
pr22r1

h
e62�eijlelek � eiklelej� �O�8�

i
,

C12
ijk �

5

4
pr31
h
e32�eijlelek � eiklelej� �O�5�

i
,

C21
ijk �

5

4
pr32
h
e31�eijlelek � eiklelej� �O�5�

i
;

F 11
ijmn � ÿ2pr31

��
dij � 9

64
e1e2

ÿ
dij � 3eiej

��
dmn �O�4�

�
,

F 22
ijmn � ÿ2pr32

��
dij � 9

64
e1e2

ÿ
dij � 3eiej

��
dmn �O�4�

�
,

F 12
ijmn � pr32

�
3

4
e1
ÿ
dij � eiej

�
dmn � e1e22

�
105

32
eiejemen ÿ 21

32
eiejdmn ÿ 15

32
dinejem ÿ 15

32
dimejen

� 9

32
dijenem ÿ 3

32
dijdmn

�
� 1

16
e31
ÿ
dij ÿ 3eiej

�
dnm � 27

256
e2e21

ÿ
dij � 7eiej

�
dnm �O�5�

�
,

F 21
ijmn � pr31

�
3

4
e2
ÿ
dij � eiej

�
dmn � e2e21

�
105

32
eiejemen ÿ 21

32
eiejdmn ÿ 15

32
dinejem ÿ 15

32
dimejen

� 9

32
dijenem ÿ 3

32
dijdmn

�
� 1

16
e32
ÿ
dij ÿ 3eiej

�
dnm � 27

256
e1e22

ÿ
dij � 7eiej

�
dnm �O�5�

�
;

T 11
ijmn �

3

16
pr41
�
e21e2eijleldmn �O�5��,
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T 22
ijmn � ÿ

3

16
pr42
�
e22e1eijleldmn �O�5��,

T 12
ijmn �

1

2
pr31r2

�
e22eijleldmn �O�4��,

T 21
ijmn �

1

2
pr32r1

�
e21eijleldmn �O�4��:
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